The cell death pathway induced by metal halide complexes of pyridine and derivative ligands in hepatocellular carcinoma cells – necrosis or apoptosis?

G. KISMALI¹, F.M. EMEN², T. YESILKAYNAK³, O. MERAL¹, D. DEMIRKIRAN¹, T. SEL¹, N. KULCU³

¹Department of Biochemistry, Ankara University Faculty of Veterinary Medicine, Ankara-Turkey
²Department of Chemistry, Mehmet Akif Ersoy University Faculty of Arts and Science, Burdur-Turkey
³Department of Chemistry, Mersin University Faculty of Arts and Science, Mersin-Turkey

Abstract. – BACKGROUND, Drugs designed to restore programmed cell death might be effective against many cancer. It was aimed to study the possible apoptotic-necrotic effects of the pyridine-halide complexes such as dichlorodipyridinepalladium(II) (PdCl₂L₁²), dichlorodipyridinenickel(II) (NiCl₂L₁²), dichlorodipyridinecopper(II) (CuCl₂L₁²), dibromodipyridinecopper(II) (CuBr₂L₁²) and dichlorobis-(2,4-dimethylpyridine)copper(II) (CuCl₂L₂²) in the hepatocarcinoma cells (Hep G2).

METHODS, All complexes were characterized by elemental analysis, 1H-NMR, FT-IR and Far-IR spectroscopy. Apoptotic effects were evaluated by cell viability assay, DNA laddering assay, LDH assay, DAPI nuclear staining and caspase 1-3-9 activity analysis.

RESULTS, According to cell proliferation/viability datas, CuCl₂L₂² was estimated the most toxic, NiCl₂L₁² the least toxic complex. Treatment of CuCl₂L₂² in IC₅₀ doses resulted in a remarkable increase lactate dehydrogenase, it was followed by CuBr₂L₁² complex. Picnotic nuclei, anisonucleosis and nuclear condensations in 200 µM concentration of CuCl₂L₂² and CuCl₂L₁² treated cells were observed with DAPI staining also DNA brakes were also determined with electrophoresis. Caspase 1, 3 and 9 increased activation were not detected.

CONCLUSIONS, The present study results indicate that, PdCl₂L₁², NiCl₂L₁², CuCl₂L₁², CuBr₂L₁², CuCl₂L₂² complexes have antiproliferative action on hepatocellular carcinoma cells. However it would be wrong to interpret this effect as an apoptosis or necrosis exactly.

Key Words: Metal halide complexes, Apoptosis, Hepatocellular carcinoma, Cell death, HepG2.

Introduction

Medicinal inorganic chemistry is a developing research area that began in 1962 with the synthesis of cis-diamminedichloroplatinum (II), later known as cisplatin. It is mainly used in the treatment of several types of cancer, including ovarian, head and neck, bladder, cervical and lymphoma. Several cisplatin analogs have been investigated as potential antitumor agents, but only two compounds (carboplatin and oxaliplatin) have entered clinical use worldwide. Some palladium (II) complexes have been tested in animals bearing transplanted tumors. Although the activity of palladium complexes have generally been shown to be lower than that of platinum analogs with similar structures, many palladium (II) and palladium (I) neutral complexes were found to exhibit antitumor activity. Transition metal-containing inorganic compounds are also considered to be potential carcinogens. Though nickel compounds are generally considered to be potentially carcinogenic, several nickel complexes have been tested for antitumor properties but were found to be inactive. Inorganic copper complexes have been the subject of numerous antitumor studies, and many of these compounds have been found to be active as anticarcinogenic agents in animals. Such complexes include bisthiosemicarbazonates and monothiosemicarbazonates, oximes, imines and hydrazones, salicylates, aminocarboxylates and other complexes with various N-donor ligands. The biological activities of pyridine derivatives have been successfully studied for various biological actions. Metal halide complexes of pyridine derivatives such as 2-chloropyridine, 2-bromopyridine, 3-chloropyridine, 3-bromopyridine, 2-methoxypyridine, 2-(p-tolyl) pyridine, 2-methylpyridine, 3-methylpyridine, 3,4-dimethylpyridine, 4-benzoylpyridine, 3-hydroxypyridine, 4-ethylpyridine have been extensive.
ly studied. However, the antitumor activities of these halide complexes have received less attention in the literature.

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, with an estimated more than half a million new cases per year. HCC is an aggressive tumor that mostly occurs secondary to viral hepatitis infection, chronic liver disease and cirrhosis. With an estimated 711,000 new cases diagnosed annually, HCC is the fifth most common cancer worldwide and the third most common cause of cancer mortality. A major obstacle to the treatment of HCC is the high rate of tumor recurrence after curative resection. Furthermore, effective palliative treatment is hindered by the fact that HCC is frequently resistant to conventional chemotherapy and radiotherapy.

Apoptosis, often used synonymously with the term “programmed cell death,” plays a crucial role in several physiological conditions and pathophysiological processes. It is a fundamental mechanism for the deletion of unwanted, senescent, or damaged cells.

Caspases, which play key roles in apoptosis, are synthesized as inactive zymogens and must be proteolytically cleaved at two aspartate residues to generate active, mature enzymes. The generation of active caspases forms a cascade in which “initiator” caspases interact with specific adapter molecules to facilitate their own autoprocessing. The active initiator caspases then in turn cleave and activate the downstream “executioner” caspases that cleave target substrates to orchestrate the proteolytic dismantling of the cell.

Based on their position in the apoptotic cascade, caspase-8, -9 and -10 are considered initiator caspases whereas caspase-3 and -7 are classified as executioner caspases. In contrast, caspases-1, -4 and -5 comprise the inflammatory caspases.

The development of tumors arise as a consequence of dysregulated proliferation and suppression of apoptosis. Many of the current chemotherapeutics designed to perturb proliferation do so in such a crude manner that the resulting damage to normal cells limits their clinical efficacy. However, targeting and overcoming abnormalities in tumor cells that suppress apoptosis could generate a potent proapoptotic stimulus by virtue of growth-deregulating mutations.

Apoptosis can be triggered by a variety of extrinsic and intrinsic signals such as cisplatin, doxorubicin, bleomycin, cytokine arabinoside, nitrogen, mustard, methotrexate, vincristine, gamma radiation, ultraviolet (UV) radiation, heat shock, viral infection, oxidants, free radicals, growth factor withdrawal, neurotransmitters and the Tumor Necrosis Factor (TNF) family of proteins.

This report describes the synthesis, cytotoxicity and apoptotic effects of dichlorodipyridinepalladium(II) (PdCl2L12), dichlorodipyridinenickel(II) (NiCl2L12), dichlorodipyridinecoppper(II) (CuCl2L12), dibromodipyridinecoppper(II) (CuBr2L12) and dichlorobis-(2,4-dimethylpyridine)coppper(II) (CuCl2L22) complexes in the human hepatocellular carcinoma cell line HepG2.

Materials and Methods

Experimental
All chemicals were of analytical reagent grade. Metal halides (PdCl2, NiCl2, and CuCl2), pyridine and 2,4-dimethylpyridine reagents were purchased from Merck. Solvents were purified according to standard procedures. Dichlorodipyridinepalladium(II) (PdCl2L12), dichlorodipyridinenickel(II) (NiCl2L12), dichlorodipyridinecoppper(II) (CuCl2L12), dibromodipyridinecoppper(II) (CuBr2L12) and dichlorobis-(2,4-dimethylpyridine)coppper(II) (CuCl2L22) were synthesized as previously described. The synthesis route of the metal(II) halide complexes with pyridine and 2,4-dimethyl pyridine is depicted in Figure 1.

Instrumentation
Infrared spectra were recorded in the range of 4000-400 cm⁻¹ on a Mattson Satallite 5000 FT-IR spectrophotometer, equipped with Winfirst software (Mattson Instruments, Madison, WI, USA), using KBR pellets. Far infrared spectra were recorded in the range of 10-800 cm⁻¹ on a Vertex 80V spectrophotometer (Bruker Optics, Ettlingen, Baden-Wurttemberg, Germany). All 1H-NMR spectra were recorded on a Bruker Ultra shield Plus Biospin Avance III Mhz 400 NaNoBay FT-NMR spectrometer (Bruker Biospin, Ettlingen, Baden-Wurttemberg, Germany), using CDCl3 as a solvent and tetramethylsilane (TMS) as an internal standard.

Synthesis of Complexes
Dichlorodipyridinepalladium(II) (PdCl2L12)
A solution of PdCl2 (0.025 mol) in ethyl alcohol (40 mL) was added dropwise to a stirred and heated (70°C) solution of pyridine (0.05 mol) in ethyl alcohol (20 mL). The reaction mixture was
refluxed for 2 h at a 70°C and then cooled to allow for the precipitation of the complex compound. The complex that was obtained was filtered off, washed with ethyl alcohol and dried in a desiccator. Yield: 81%. Anal. Calc. for PdCl$_2$(H$_2$N$_2$Cl)$_2$: C, 35.80; H, 3.00; N, 8.35. Found: C, 35.77; H, 3.10; N, 8.38. IR (KBr pellet, cm$^{-1}$): (C-C) 1607, (C-C) 1579. 1H-NMR (CDCl$_3$): 8.76-8.78 (d, 4H, C-H), 7.71-7.73 (t, 2H, C-H), 7.26-7.30 (m, 4H, C-H).

Dichlorodiprydininickel(III) (NiCl$_2$L$_1^{+}$)

A solution of NiCl$_2$ (0.025 mol) in ethyl alcohol (40 ml) was slowly added to a solution of pyridine (0.05 mol) in ethanol (20 ml). The reaction mixture was refluxed at 70°C for 2 h. The mixture was cooled until a precipitate was formed. The precipitate was filtered and then washed with ethyl alcohol and dried in a desiccator. Yield: 85%. Anal. Calc. for NiCl$_2$(H$_2$N$_2$Cl)$_2$: C, 41.70; H, 3.50; N, 9.27. Found: C, 41.72; H, 3.49; N, 9.29. IR (KBr pellet, cm$^{-1}$): (C-C) 1606, (C-C) 1574. 1H-NMR (CDCl$_3$): 8.73-8.77 (d, 4H, C-H), 7.70-7.73 (t, 2H, C-H), 7.25-7.33 (m, 4H, C-H).

Dichlorodiprydinecopper(III) (CuCl$_2$L$_1^{+}$)

A solution of CuCl$_2$ (0.025 mol) prepared in ethyl alcohol (40 ml) was added dropwise to a stirred solution of pyridine (0.05 mol) in ethanol (20 ml). The reaction mixture was refluxed for 2 h at 70°C and cooled for the precipitation of the complex compound. The obtained precipitate was filtered, washed with ethyl alcohol and dried in a desiccator. Yield: 81%. Anal. Calc. for CuCl$_2$(H$_2$N$_2$Cl)$_2$: C, 41.05; H, 3.45; N, 9.57. Found: C, 41.04; H, 3.44; N, 9.57. IR (KBr pellet, cm$^{-1}$): (C-C) 1605, (C-C) 1574. Far-IR (cm$^{-1}$): (Cu-N) 266, (Cu-Cl) 289.

Dibromodiprydinecopper(III) (CuBr$_2$L$_1^{+}$)

This complex was prepared by a procedure similar to its chloro analogues. CuBr$_2$ (0.025 mol) was dissolved in ethyl alcohol (40 ml) and heated at 70°C with a magnetic stirrer and heater. Pyridine (0.05 mol) dissolved in ethanol (20 ml) was added to this solution dropwise, and then the mixture was refluxed at 70°C for 2 h. The reaction mixture was cooled for the precipitation of the complex compound. The obtained complex was filtered off, washed with ethyl alcohol and dried in a desiccator. Yield: 84%. Anal. Calc. for CuBr$_2$(H$_2$N$_2$Br)$_2$: C, 31.72; H, 2.63; N, 7.36. Found: C, 31.48; H, 2.64; N, 7.34. IR (KBr pellet, cm$^{-1}$): (C-C) 1605, (C-C) 1574. Far-IR (cm$^{-1}$): (Cu-N) 254, (Cu-Cl) 266.

Dichlorobis-(2,4-dimethylpyridine)copper(II) (CuCl$_2$L$_2^{2-}$)

A solution of CuCl$_2$ (0.025 mol) in ethyl alcohol (40 ml) was added dropwise to a stirred solution of 2,4-dimethylpyridine (0.05 mol) in ethanol (20 ml). The reaction mixture was refluxed for 2 h at 70°C. The mixture was cooled to allow for the precipitation of the complex compound. The obtained complex was filtered off, washed with ethanol and dried in a desiccator. Yield: 80%. Anal. Calc. for CuCl$_2$(H$_2$N$_2$Cl)$_2$: C, 41.70; H, 5.20; N, 8.03. Found: C, 41.68; H, 5.22; N, 8.06. IR (KBr pellet, cm$^{-1}$): (C-C) 1614, (C-C) 1560. Far-IR (cm$^{-1}$): (Cu-N) 254, (Cu-Cl) 266.

Cell Culture

The human hepatocellular carcinoma cell line HepG2 was purchased from ATCC (Wesel, Germany, Cat. HB-8065). HepG2 cells were maintained in Dulbecco’s Modified Eagle (DME)
High Glucose media with 584 mg/L of L- Glutamine (Irvine Scientific, Santa Ana, CA, USA) containing 10% fetal bovine serum (Irvine Scientific, Santa Ana, CA, USA) and 50 µg/mL gentamycin sulfate solution (Irvine Scientific, Santa Ana, CA, USA). Cells were grown in 75 cm² vented cap flasks (BD Falcon, Rockville, MD, USA) in a humidified (5% CO₂) 37°C incubator. Medium was changed every two days. Cells were subcultured at a 1:4 ratio with trypsin-EDTA solution (Irvine Scientific, Santa Ana, CA, USA). Cells were incubated in plates 24 h before the experiment to enable attachment. Dead or unattached cells were removed by washing out twice with phosphate buffered saline – PBS – (Irvine Scientific, Santa Ana, CA, USA) before all assays. A colorimetric assay was used for the quantification of cell proliferation and cell viability, based on the cleavage of the tetrazolium salt WST-1 to formazan by cellular mitochondrial dehydrogenases (The Quick Cell Proliferation Assay Kit, Biovision, San Francisco, CA, USA). The formazan dye produced by viable cells was quantified spectrophotometrically. Assays were performed according to the manufacturer’s protocol. Briefly, cells were seeded in 96-well microtiter plates in a final volume 100 µL medium. Cells were incubated in normal cell culture conditions 24 h before each experiment. WST-1/Electrocoupling solution (10 µL/well) was added to all control and experiment cell groups. After a 1 h incubation, absorbances were measured at 420-650 nm in a microtiter plate reader. The results were presented as the optical density. Each experiment was done in triplicate. Results were used to determination the IC₅₀ values for each complex.

DAPI Nuclear Staining

For morphological observations, 1×10⁶ cells/well in 1 mL of culture medium were seeded in 2-well chamber slides (Lab-Tek II Chamber Slide, Nunc, Rochester, NY, USA). The same subcultured cells were used in each experiment so that there was no effect of cell age on the experiment. The blue-fluorescent 4,6-diamidino-2-phenylindole (DAPI) nucleic acid stain preferentially stains dsDNA; it appears to associate with AT clusters in the minor groove. Binding of DAPI to dsDNA produces a ~20-fold fluorescence enhancement, apparently due to the displacement of water molecules from both DAPI and the minor groove. Changes in cell morphology and characteristics of apoptosis were examined by fluorescence microscopy of DAPI-stained cells (Leica DMI 4000, Wetzlar, Germany). The adherent monolayer cells were grown in two-well chamber slides. Cells were washed twice with PBS. DAPI stain (Gerbu, Wieblingen, Germany) was prepared at a 1:1000 dilution in Water for Injection (WFI) grade water and then added to the cells so that the cells were completely covered. Incubation was performed for 15 minutes at room temperature. At the end of the incubation period, the DAPI solution was aspirated and then the slides were washed once with PBS. The apoptotic nuclei (intensely stained, fragmented nuclei and condensed chromatin) were examined using a fluorescent microscope (Leica DMI 4000, Wetzlar, Germany) with 340-380 nm excitation.

DNAFragmentation Assay

HepG2 cells were seeded in a 25 cm² culture flask. After the cell density reached 1×10⁶ cells/mL, the cells were incubated with or without complexes (IC₅₀) for 24 h. After treatment, supernatants were collected to analyze the DNA damage in the detached cells. The attached cells were trypsinized and collected by centrifugation (Sigma, 3-30K, Osterode am Harz, Germany). Pellets were washed with PBS, dissolved in lysis buffer (10 mM Tris-Cl, 1 mM EDTA, pH 7.4, 0.2% Triton X-100) and incubated at 37°C for 1 h in a heating block. At the end of the incubation period, cells were centrifuged at 20,000 × g for 10 min at 4°C. The cytoplasmic fraction (supernatant) was transferred to a clean tube. The pellet (nuclear DNA) left in the tube was dissolved in lysis solution and added to 0.1 mL of ice cold 5 M NaCl and 0.7 ml of ice cold isopropanol. Precipitation was allowed to occur for 1 hour in ethanol/dry ice. After precipitation, DNAs were recovered by centrifugation at 20,000 × g. Supernatants were discarded and the DNA samples were air dried. Samples were dissolved in buffer (10 mM Tris-Cl, 1 mM EDTA) and loading solution was added. All supernatants (top and bottom phases) were put in a heating block for 10 min at 65°C.

An agarose gel was prepared at a concentration of 1%. Ethidium bromide solution was added to samples and electrophoresis was then
conducted for 1 hour at 100 V in Tris-Acetic acid-EDTA (TAE) buffer. DNA bands were analyzed using UV light and a gel imaging system (Kodak Gel Logic 2200, Rochester, NY, USA).

Assessment of Cell Injury

Injury of HepG2 cells was quantified by measuring the release of lactate dehydrogenase (LDH) from lysed cells into the bathing medium. Cells (1×10⁴ cells/well) were placed in 96-well plates and incubated with complexes for 24 h. Concentrations of supernatant LDH levels were determined using a commercially available colorimetric assay kit (TML Medical, Ankara, Turkey). A Clinical Chemistry Analyzer (ERBA XL 600, Meinheim, Germany) was used for the analysis. Total LDH release corresponding to complete HepG2 death was determined for each experiment. Each experiment was done in triplicate.

Caspase 1, Caspase 3 and Caspase 9 Assays

The caspase assays were based on the spectrophotometric detection of the chromophore p-nitroanilide (pNA) after cleavage from the labelled specific substrate YVDA-pNA, DEVD-pNA or LEHD-pNA. The pNA light emission was quantified using a microtiter plate reader at 400-405 nm. Assays were performed according to the manufacturer’s protocol (Caspase 1/ICE, Caspase 3/CPP32, Caspase 9 Colorimetric Assays, BioVision, San Francisco, CA, USA). Briefly, cells were seeded in 25 cm² flasks and labeled as control or treatment groups. Experimental cell groups were treated with complexes for 24 h with the IC₅₀ dose. Cells incubated without complexes were used as a control. Cells were collected by centrifugation and lysed with lysis buffer. Protein amounts were determined using the Bradford protein quantification method.⁹⁷ For each caspase assay, 100 µg of protein lysate was used. Reaction buffer and YVAD-pNA substrate were added and incubated 37°C for 1 h. Optical densities were read at 400 nm with a microtiter plate reader. All experiments were repeated three times. Caspase-1, -3 and -9 activities were determined by comparing the results of treated and control cells.

Results

Dichlorodipyridinepalladium(II) (PdCl₂L₁²), dichlorodipyridinenickel(II) (NiCl₂L₁²), dichlorodipyridinecopper(II) (CuCl₂L₁²), dibromodipyridinecopper(II) (CuBr₂L₁²) and dichlorobis-(2,4-dimethylpyridine)copper(II) (CuCl₂L₂²) complexes were synthesized as previously described.³²-³⁶ The reaction of the pyridine and 2,4-dimethylpyridine with metal halides (chloride and bromide) at 70°C with ethanol as the solvent yielded the complexes (Figure 1). The chemical structures of the complexes were verified by using elemental analysis,¹ H-NMR, FT-IR and Far-IR spectroscopy.¹ H-NMR spectra of copper complexes were not recorded because of their paramagnetic properties. Analytical and spectral data for the complexes are provided in the materials and methods section. The results are consistent with the proposed structures described in literature.³²-³⁶

The effects of PdCl₂L₁², NiCl₂L₁², CuCl₂L₁², CuBr₂L₁² and CuCl₂L₂² complexes on the proliferation of HepG2 cells was investigated using the Quick Cell Proliferation Assay. The cell viability changes were found to depend on the concentrations and type of complexes. Results are shown in Figure 2. Complexes inhibited the proliferation of HepG2 human hepatocellular carcinoma cells in a concentration-dependent manner. Half-maximal inhibitory concentration (IC₅₀) values were determined for after a 24 h incubation. The following IC₅₀ doses were determined: NiCl₂L₁² (175 µM), CuCl₂L₁² (88 µM), CuBr₂L₁² (125 µM) and CuCl₂L₂² (55 µM). All the complexes were dissolved in water for injection except for PdCl₂L₁². This complex was dissolved in dymethyl sulfoxide (DMSO), which has toxic effects on cells at high concentrations. The toxic dose of DMSO was determined to be 10% for HepG2 cells. PdCl₂L₁² was prepared at a maximum concentration of 200 µM; at higher doses, the compound was not soluble in DMSO. The toxic effect was therefore determined at 200 µM in HepG2 cells, but this effect does not depend solely on the palladium complex but also on the DMSO concentration. Thus the IC₅₀ dose for dichlorodipyridinepalladium(II) could not be determined. Because the IC₅₀ dose would be necessary for further apoptosis experiments, dichlorodipyridinepalladium(II) was, therefore, not examined in the following studies. According to cell proliferation/viability data, CuCl₂L₂² was determined to be the most toxic and NiCl₂L₁² was the least toxic complex.

Cell membrane damage was also monitored using the LDH leakage assay, because LDH is a stable cytosolic enzyme in normal cells and can leak into the extracellular fluid only after membrane damage. Exposure to complexes at IC₅₀
doses for 24 h resulted in LDH release from HepG2 cells to varying extents (Figure 3). Supernatant LDH levels (IU/mL) are provided in Table I. Treatment of dichlorobis-(2,4-dimethylpyridine)copper(II) at the IC_{50} dose resulted in a remarkable increase in LDH release; the amount of release was followed by the dibromodipyridinecopper(II) complex.

The nuclear morphology of the HepG2 cells was analysed using DAPI staining fluorescence microscopy. Chromatin cleavage was determined using conventional agarose gel electrophoresis (DNA laddering assay). DAPI is a fluorescent stain and is used extensively in fluorescence microscopy. When bound to double-stranded DNA, DAPI has its absorption maximum at 358 nm and its emission maximum at 461 nm.

We observed several picnotic nuclei, anisonucleosis and nuclear condensation in cells treated with 200 µM of dichlorobis-(2,4-dimethylpyridine) copper(II) and dichlorodipyridinecopper(II). This nuclear morphological change precedes chromatin condensation and can be dissociated from many early apoptotic events, such as DNA cleavage and cell shrinkage (Figures 4-8). These findings were dose-dependent, and DNA breaks were observed when a DNA laddering assay was used.

Endonuclease activation is a characteristic feature of apoptosis. This degrades genomic DNA at internucleosomal linker regions and produces 180 base pair DNA fragments. After agarose gel electrophoresis, this fragmentation gives a characteristic “laddered” appearance. In the present study, though the results do not show DNA ladderizing patterns as previously published, DNA drifts were observed on the agarose gels (Figures 9, 10).

Caspase-1 has been shown to induce cell necrosis or pyroptosis and may function in various developmental stages. Caspase-1 is synthesized as a zymogen that is cleaved into 20 kDa (p20) and 10 kDa (p10) subunits that become part of the active enzyme. Caspase-1 activation was assayed and results were compared to untreated control cells. Changes were calculated as a percentage relative to the untreated control cells. Caspase-1 levels decreased 54, 37, 4, and 50% upon treatment with CuBr_2L_1^2, CuCl_2L_1^2, NiCl_2L_1^2 and CuCl_2L_2^2, respectively.

Caspase-9 is an initiator caspase. Once initiated, caspase-9 goes on to cleave procaspase-3. Caspase-9 activation was assessed spectrophotometrically and results were compared as a percentage to untreated control cells. Caspase-9 levels decreased 54, 37, 4 and 50% upon treatment with CuBr_2L_1^2, CuCl_2L_1^2, NiCl_2L_1^2 and CuCl_2L_2^2, respectively.

Caspase-3 is activated in apoptotic cells both by extrinsic (death ligand) and intrinsic (mitochondrial) pathways. As an executioner caspase, the caspase-3 zymogen has virtually no activity until it is cleaved by an initiator caspase after apoptotic signaling events have occurred. Caspase 3 activation was also assayed spectrophotometrically and results were compared to untreated...
ed control cells. Caspase 1 levels decreased 75, 42, 8 and 54% upon treatment with CuBr₂L₁₂, CuCl₂L₁₂, NiCl₂L₁₂ and CuCl₂L₂₂, respectively.

Discussion

Drugs designed to restore programmed cell death may be effective against many cancers. Selective killing of tumor cells may be achievable with such drugs because unlike normal cells, cancer cells are under stress, destined to die, and highly dependent on aberrations of the apoptosis signalling pathways to stay alive.

Therapeutic strategies that induce the apoptotic process in various ways can be applied to cancer management. In the case of HCC, ursodeoxycholic acid (UDCA), used worldwide for the treatment of primary biliary cirrhosis and other chronic liver diseases, reduces hepatocarcinogenesis by inducing apoptosis of ‘initiated hepatocytes’ and by inhibiting proliferation.

The search for metal-based antitumor drugs resulted from the discovery by Rosenberg et al in 1965 that cisplatin could effectively inhibit tumor growth. Cisplatin has subsequently become the most widely used anticancer drug in the world.

The compounds 2-acetylpyridine-N4-1-(4-fluorophenyl)piperazinylthiosemicarbazone, bis[2-acetylpyridine-N4-1-(4-fluorophenyl)piperazinylthiosemicarbazonato]zinc(II) and bis[l-acetato(2-acetylpyridine-N4-1-(4-fluorophenyl) piperazinylthiosemicarbazonato]zinc(II) were tested for their antiproliferative activity in vitro in the cells of four human cancer cell lines: HeLa (cervix aden...
Figure 4. DAPI nuclear staining for dichlorodipyridinepalladium(II) doses. A, Control. B, 200 μM. C, 100 μM. D, 50 μM. E, 25 μM. F, 12.5 μM. G, 6.25 μM. H, 3.12 μM; 24h incubation.

Figure 5. DAPI nuclear staining for dichlorobis-(2,4-dimethylpyridine) copper(II) doses. A, Control. B, 200 μM. C, 100 μM. D, 50 μM. E, 25 μM. F, 12.5 μM. G, 6.25 μM. H, 3.12 μM; 24h incubation.

Figure 6. DAPI nuclear staining for dichlorodipyridinecopper(II) doses. A, Control. B, 200 μM. C, 100 μM. D, 50 μM. E, 25 μM. F, 12.5 μM. G, 6.25 μM. H, 3.12 μM; 24h incubation.
The differences in the antiproliferative actions of PdCl$_2$L$_1^2$, NiCl$_2$L$_1^2$, CuCl$_2$L$_1^2$, CuBr$_2$L$_1^2$ and CuCl$_2$L$_2^2$ complexes indicate that the metal-halide complexes of pyridine or 2,4-dimethylpyridine have different antiproliferative activities.

Treatment for 24 h with NiCl$_2$L$_2^2$, CuCl$_2$L$_1^2$, CuBr$_2$L$_1^2$ and CuCl$_2$L$_2^2$ complexes at IC$_{50}$ doses effectively induce cell death. The form of cell death may be apoptotic cell suicide, with rounding and detachment of HepG2 cells. In addition to this, the ligand as well as the complexes demonstrated antiproliferative activities with IC$_{50}$ values ranging from 26 to 90 nM. The compound 2-acetylpyridine-N4-1-(4-fluorophenyl)piperazylthiosemicarbazone was shown to be 61 times more active than cisplatin in MDA-MB-361 and MDA-MB-453 cells and 303 times more active than cisplatin in HeLa and K562 cells.

Figure 7. DAPI nuclear staining for dichlorodipyridinenickel(II) doses. A, Control. B, 200 µM. C, 100 µM. D, 50 µM. E, 25 µM. F, 12.5 µM. G, 6.25 µM. H, 3.12 µM; 24h incubation.

Figure 8. DAPI nuclear staining for dibromodipyridinecopper(II) doses. A, Control. B, 200 µM. C, 100 µM. D, 50 µM. E, 25 µM. F, 12.5 µM. G, 6.25 µM. H, 3.12 µM; 24h incubation.
Gokhale et al. tested the ligand and the copper complex for antitumor activity against the human breast cancer cell line MCF-7. Cells treated with N1-(2-benzyloxybenzylidene) pyridine-2-carboxamidrazone were shown to be growth arrested but viable, whereas those treated with cis-[dichloro(N1-(2-benzyloxybenzylidene)pyridine-2-carboxamidrazone)copper(II)] showed cell death at a comparatively low concentration, indicating a direct cytotoxic action. The IC50 value for the copper complex was 3 µM, which is four times less than that of the ligand. In our present study, the IC50 values that were determined were much higher than of Gokhale et al. The sensitivity of cells to any of these stimuli can vary depending to their growth inhibition activities, marked cytological changes, and cell detachment from their substrates. In the present study even though cell death was observed for all synthesized metal-halide complexes of pyridine or 2,4-dimethylpyridine, increased activation of caspases-1, -3 and -9 was not found. Thus it is difficult to conclude whether or not the cell death mechanism was apoptosis.

DNA fragmentation is one of the key features of apoptosis and also occurs in certain stages of necrosis. Apoptosis is characterized by the activation of endogenous endonucleases with subsequent cleavage of chromatin DNA into internucleosomal fragments of ~180 bp. This DNA fragmentation is analyzed by agarose gel electrophoresis to show a “ladder” pattern. Necrosis, on the other hand, is characterized by random DNA fragmentation which forms a “smear” on agarose gels. Pyridine-halide complexes, especially CuCl2L12 and CuBr2L12, caused DNA damage and a smear-ladder pattern. Histochemical studies such as the TUNEL assay may be necessary to make accurate conclusions.

Gokhale et al. tested the ligand and the copper complex for antitumor activity against the human breast cancer cell line MCF-7. Cells treated with N1-(2-benzyloxybenzylidene) pyridine-2-carboxamidrazone were shown to be growth arrested but viable, whereas those treated with cis-[dichloro(N1-(2-benzyloxybenzylidene)pyridine-2-carboxamidrazone)copper(II)] showed cell death at a comparatively low concentration, indicating a direct cytotoxic action. The IC50 value for the copper complex was 3 µM, which is four times less than that of the ligand. In our present study, the IC50 values that were determined were much higher than of Gokhale et al. The sensitivity of cells to any of these stimuli can vary depending to their growth inhibition activities, marked cytological changes, and cell detachment from their substrates. In the present study even though cell death was observed for all synthesized metal-halide complexes of pyridine or 2,4-dimethylpyridine, increased activation of caspases-1, -3 and -9 was not found. Thus it is difficult to conclude whether or not the cell death mechanism was apoptosis.

DNA fragmentation is one of the key features of apoptosis and also occurs in certain stages of necrosis. Apoptosis is characterized by the activation of endogenous endonucleases with subsequent cleavage of chromatin DNA into internucleosomal fragments of ~180 bp. This DNA fragmentation is analyzed by agarose gel electrophoresis to show a “ladder” pattern. Necrosis, on the other hand, is characterized by random DNA fragmentation which forms a “smear” on agarose gels. Pyridine-halide complexes, especially CuCl2L12 and CuBr2L12, caused DNA damage and a smear-ladder pattern. Histochemical studies such as the TUNEL assay may be necessary to make accurate conclusions.
on a number of factors, such as the expression of pro- and anti-apoptotic proteins (e.g., the Bcl-2 proteins or the Inhibitor of Apoptosis Proteins), the severity of the stimulus and the stage of the cell cycle. Hepatocytes and hepatocellular carcinoma cells were more resistant than other cells against toxic agents.

Prachayasittikul et al\(^6\) investigated the anticancer activities of the 1-adamantylthiopyridines in four cell lines: MOLT-3, HepG2, HuCCA-1 and A549. It was reported that 1-adamantylthionicotinic acid, its amide and nitrile derivatives were inactive in all the tested cell lines. On the other hand, 2-(1-adamantylthio)-5-hydroxypyridine and 3-(1-adamantylthio)-5-bromopyridine were inactive in all the tested cell lines.

Targeting apoptosis is a promising strategy for cancer drug discovery. The present data will aid in future work. In investigating the agents that trigger apoptosis, the sensitivity of tumor cells will indicate the success of chemotherapies and the reduced costs of treatment.

References

38) SALVESEN GS. Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 2002; 9: 3-5.

