Asymmetric phthalocyanine derivatives containing 4-carboxyphenyl substituents for dye-sensitized solar cells

Sadik Cogal a,e, Sule Erten-Ela b,**, Kasim Ocakoglu c,d, Aysegul Uygun Oksuz e,*

a Mehmet Akif Ersoy University, Faculty of Arts and Science, Department of Chemistry, 15030 Burdur, Turkey
b Ege University, Solar Energy Institute, Bornova, 35100 Izmir, Turkey
c Advanced Technology Research & Application Center, Mersin University, Ciftlikkoy Campus, 33343 Yenisehir, Mersin, Turkey
d Mersin University, Tarsus Faculty of Technology, Department of Energy Systems Engineering, 33480 Mersin, Turkey
e Suleyman Demirel University, Faculty of Arts and Science, Department of Chemistry, 32260 Isparta, Turkey

A R T I C L E I N F O
Article history:
Received 20 June 2014
Received in revised form 15 August 2014
Accepted 9 September 2014
Available online 19 September 2014

Keywords:
Phthalocyanine
Asymmetric
4-Carboxyphenyl
Dye-sensitized solar cell
Thiophene
Bithiophene

A B S T R A C T
The synthesis of two asymmetrical zinc (II) phthalocyanines (ZnPcs) containing 4-carboxyphenyl and 3-thienyl or 5-hexyl-2,2'-bithiophene substituent was described. These Zinc Phthalocyanines were synthesized by a statistical condensation reaction between two different phthalonitriles. Each of the phthalonitrile precursors was accomplished by the Suzuki-Miyaura cross-coupling reactions with the aryldiiodide and corresponding boronic acids. The ZnPc dyes were characterized by MALDI-MS, FT-IR, 1H NMR, UV–Vis, fluorescence and cyclic voltammetry methods. Compared with 3-thienyl substituted ZnPc-1 dye, the Q-band absorption of 5-hexyl-2,2'-bithiophene substituted ZnPc-2 was red-shifted by 13 nm because of the extension of π-system. The ZnPc dyes were used as sensitizers in dye-sensitized solar cells (DSSCs). ZnPc-2 sensitized solar cell devices using a 7 (transparent) + 5 (scattering) μm thin TiO2 layer yielded a short-circuit photocurrent density of 3.81 mA/cm2, an open-circuit voltage of 0.71 V, a fill factor of 0.59, corresponding to an overall conversion efficiency of 1.12% under standard AM 1.5 sun light.

1. Introduction

Dye-sensitized solar cells (DSSCs) have received increasing attention due to their high incident to photon efficiency, easy fabrication and low production cost [1]. Tremendous research efforts have been devoted to the development of new and efficient sensitizers suitable for practical use. In TiO2-based DSSCs, efficiencies of up to 11.4% under simulated sunlight have been obtained with ruthenium–polypyrrolid complexes [2–4]. However, the main drawback of ruthenium complexes is the lack of absorption in the red region of the visible light and the high cost. For this reason, dyes with large and stable π-conjugated systems such as porphyrins and phthalocyanines are important classes of potential sensitizers for highly efficient DSSCs. Recently, the porphyrin dyes YD2-oC8 and SM315 showed the highest power conversion efficiencies of 12.3% and 13%, respectively, which broke the ruthenium based DSSCs record [5,6].

Among the various synthetic dyes being investigated for application in DSSCs, phthalocyanines (Pcs) have been considered to be promising candidates because of their unique optical and electrical properties [7]. These dyes are well known chromophores for their strong absorption around 300 and 700 nm, as well as for their excellent electrochemical, photochemical and thermal stability [8,9]. Moreover, the redox properties of Pcs are suitable for the sensitization of wide band gap semiconductors such as TiO2 [10]. Therefore, Pcs are excellent alternative materials for DSSC applications and considerable research efforts have been made on the synthesis of various Pcs and ZnPcs. Furthermore, to achieve higher efficiency, researchers have focused on extension of the π-system and lowering the symmetry of the macro-cycle, which can result in a broadened Soret band and a red-shifted Q band absorption [11,12]. Recently, several groups have synthesized unsymmetrical phthalocyanines to improve the efficiency of DSSC [13–15]. In order to move the Q-band absorption of phthalocyanine to longer wavelength, the π-electron conjugation system can be extended by using various substituents [16–18]. In this study, we have designed two new unsymmetrical phthalocyanines (Fig. 1) containing 4-carboxyphenyl, 3-thienyl and 5-hexyl-2,2'-bithiophene substituent and investigated their performance in DSSC.

© 2014 Elsevier Ltd. All rights reserved.
group was selected as an anchoring moiety to the TiO₂ surface. Substitution of 3-thienyl and 5’-hexyl-2,2’-bithiophene groups at the β-positions of the Pc ring could result in the extension of the π-system. We reported the efficiencies of zinc phthalocyanines using nanocrystalline TiO₂. ZnPc-2 sensitizers exhibited an efficiency of 1.12% using nanocrystalline 7 (transparent) + 5 (scattering) μm TiO₂ layers.

2. Experimental

2.1. Materials

4-Aminophthalonitrile, 3-thienylboronic acid, 5’-hexyl-2,2’-bithiophene-5-boronic acid pinacol ester, 4-methoxycarbonyl phenylboronic acid, chloroform (CHCl₃), tetrahydrofuran (THF), hexane, tetrakis(triphenylphosphine) palladium(0) [Pd(PPh₃)₄], 1,2-dimethoxyethane (DME), 2-dimethylaminoethanol (DMAE), 1,8-hexane, tetrakis(triphenylphosphine)palladium(0) [Pd(PPh₃)₄], 1,2-diazabicyclo[5.4.0]undec-7-ene (DBU), zinc (II) acetate [Zn(OAc)₂], sodium carbonate (Na₂CO₃), and sodium hydroxide (NaOH) were purchased from Aldrich; bithiophene-5-boronic acid pinacol ester, 4-methoxycarbonyl phenylboronic acid, chloroform (CHCl₃), tetrahydrofuran (THF), nanoporous TiO₂. ZnPc-2 sensitizer exhibited an efficiency of 1.12% using nanocrystalline 7 (transparent) + 5 (scattering) μm TiO₂ layers.

2.2. Synthesis of 4-(3-thienyl)phthalonitrile

4-Iodophthalonitrile (254 mg, 1 mmol), 5’-hexyl-2,2’-bithiophene-5-boronic acid pinacol ester, 4-methoxycarbonyl phenylboronic acid (414 mg, 1.1 mmol) and Pd(PPh₃)₄ (57.8 mg, 0.05 mmol) were dissolved in 20 mL of DME. To this mixture, aqueous solution of Na₂CO₃ (53 mg, 0.5 mmol) was added. The resultant reaction mixture was heated at 80 °C under argon atmosphere for 16 h and then the reaction mixture is allowed to cool to room temperature. The reaction mixture was filtered and solvent was evaporated and the residue was collected, subjected to silica gel column chromatography and eluted with chloroform:hexane (3:1) mixture. Yield: 58%. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 7.09 (m, 3H, CH₃), 7.36 (m, 3H, Ar-H), 7.40 (m, 3H, Ar-H), 7.50 (m, 1H, Ar-H), 7.67 (m, 1H, Ar-H), 7.84 (m, 1H, Ar-H), 7.91–8.00 (m, 1H, Ar-H), 13.49 (1H, N–H). ¹³C NMR (CDCl₃, 400 MHz): δ (ppm) = 113.57, 115.39, 115.50, 116.66, 124.26, 125.52, 128.14, 130.38, 131.07, 134.08, 138.18, 140.78. FTIR (KBr) (cm⁻¹): 3102, 3071, 2956, 2849, 2389, 2291, 2230 (CN), 1714 (C=O), 1701 (C=O), 1368, 1390, 1363, 1314, 1280, 1219, 1175, 1104, 1065, 905, 879, 786, 777, 723, 521, 486, 430.

2.4. Synthesis of 4-(4-methoxycarbonylphenyl)phthalonitrile (8)

4-Methoxycarbonylphenylboronic acid (300 mg, 1.67 mmol), 4-iiodophthalonitrile (381 mg, 1.50 mmol) and Pd(PPh₃)₄ (173.34 mg, 0.15 mmol) were dissolved in 20 mL of DME and stirred under argon for 10 min. Then, aqueous Na₂CO₃ (318 mg, 3 mmol) was added slowly in a few portions, and the mixture was heated at 80 °C. After cooling to room temperature, the solvent was removed under vacuum and the residue was dissolved in 100 mL CHCl₃, washed three times with distilled water and dried over NaSO₄. The drying agent was removed by filtration and CHCl₃ evaporated in vacuum. The resulting solid was purified by column chromatography on silica gel by using CH₂Cl₂ as an eluent. Compound 8 was obtained as a white solid (250 mg, 65.4%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 8.23–8.21 (1H, Ar-H), 8.05 (1H, Ar-H), 8.01 (1H, Ar-H), 7.99 (1H, Ar-H), 7.96–7.94 (1H, Ar-H), 7.71 (1H, Ar-H), 7.69 (1H, Ar-H), 4.00 (3H, CH₃). FTIR (KBr): v (cm⁻¹): 3422, 3104, 3071 (H-Ar), 2956, 2849, 2389, 2291, 2230 (CN), 1714 (C=O), 1600 (Ar=C=O), 1484 (Ar=C=O), 1426, 1384, 1295 (C-O), 1186, 1109, 1015, 956, 918, 841, 765, 695, 519.

2.5. Synthesis of 2-(4-carboxyphenyl)-9(10), 16(17), 23(24)-tris(3-thienyl)phthalocyaninato zinc(II) (ZnPc-1)

4-(3-Thienyl)phthalonitrile (1.05 mmol, 220.76 mg), 4-(4-methoxycarbonylphenyl)phthalonitrile (0.35 mmol, 91.79 mg) and Zn(OAc)₂ (10 mmol, 183 mg) were dissolved in 10 mL DMEA. The mixture was added by three drops of DBU and heated at 130 °C under argon atmosphere for 12 h. The reaction mixture was then allowed to cool to room temperature and the solvent was removed under vacuum. The residue was washed with a MeOH:H₂O (5:1) mixture. The solid obtained was purified by column chromatography on silica gel with MeOH:CHCl₃ as an eluent. Compound 9 was obtained as a white solid (250 mg, 65.4%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 9.42–9.11 (broad, m, 1H, N–H).
2.6. Synthesis of 2-(4-carboxyphenyl)-9(10), 16(17), 23(24)-tris(5′-hexyl-2,2′-bithiophene)phthalocyaninato zinc(II) (ZnPc-2)

4-(5′-hexyl-2,2′-bithiophene)phthalonitrile (0.54 mmol, 203 mg), 4-[4-(methoxy carbonyl)phenyl]phthalonitrile (0.18 mmol, 47.2 mg) and Zn(OAc)₂ (10 mmol, 183 mg) were dissolved in 10 mL DMAE. The mixture was added by three drops of DBU and heated at 130 °C under argon atmosphere for 12 h. The reaction mixture was then allowed to cool to room temperature and the solvent was removed under vacuum. The residue was washed with a MeOH:H₂O (5:1) mixture. The solid obtained was purified by column chromatography on silica gel. A THF eluent removed most of the symmetric tetraakis(5′-hexyl-2,2′-bithiophene)phthalocyanine and a THF:DMF (10:1) eluent to separate the ZnPc-2 methyl ester.

This fraction was dissolved in 20 mL of THF:MeOH (3:1) mixture and hydrolyzed at 60–70 °C for 1 h. The reaction mixture was then allowed to cool to room temperature and the organic solvent was removed under vacuum. The pH of the reaction mixture was set to pH 3–4 by adding 1 M HCl solution, and the precipitate was formed. The precipitate was collected and washed several times with pH 3–4 by adding 1 M HCl solution, and the precipitate was formed. The precipitate was washed with a MeOH:H₂O mixture and dried to give 0.57 g (47.6 mg) and Zn(OAc)₂ (10 mmol, 183 mg) were dissolved in 10 mL DMAE. The mixture was added by three drops of DBU and heated at 110 °C for 15 min. The cell was sealed using a Surlyn (60 μm) microscope cover glass. Current-vs. voltage (J–V) curves were obtained using Keithley measurement unit and the light source containing 0.1 M tetrabuthylammonium hexafluorophosphate (TBAPF₆) was used as electrolyte. The J–V curves were measured using the cell BuBr Microflex LT MALDI-TOF mass spectrometer. The electrochemical measurement was recorded using a Gamry PC4/300 model the potentiotstat.

3. Results and discussion

Asymmetrically substituted phthalocyanines show interesting properties due to the presence of different groups in the same macrocycle. In the literature, three methods have been commonly used for the synthesis of unsymmetrical phthalocyanines: a statistical condensation [21], a polymer support [22] or using sub-phthalocyanines [23]. Among these methods, the statistical cyclotetramerization was used to prepare the phthalocyanines in this study. According to this method, two phthalonitriles (A and B) mixture was used, for which one used in excess (A) to obtain in this study. According to this method, two phthalonitriles (A and B) mixture was used, for which one used in excess (A) to obtain the desired A₃B structure. Scheme 1 shows the synthetic route of the phthalocyanines.

Fig. 2 shows absorption spectra of phthalocyanines recorded in THF solution. The spectrum of ZnPc-1 shows the Q-band at 684 nm, whereas ZnPc-2 shows a maximum absorbance at 700 nm. The Q-band observed in phthalocyanines was attributed to π–π transitions from the highest occupied molecular orbital (HOMO) and to lowest unoccupied molecular orbital (LUMO) of the conjugated macrocycle. Both compounds, ZnPc-2 and ZnPc-3, present a Soret band absorption around at 358 and 359 nm, respectively. The Soret band was observed due to the transitions from the deeper π levels to the LUMO of the conjugated macrocycle. Both compounds, ZnPc-2 and ZnPc-3, present a Soret band absorption around at 358 and 359 nm, respectively. The Soret band was observed due to the transitions from the deeper π levels to the LUMO of the conjugated macrocycle. Both compounds, ZnPc-2 and ZnPc-3, present a Soret band absorption around at 358 and 359 nm, respectively. The Soret band was observed due to the transitions from the deeper π levels to the LUMO of the conjugated macrocycle. Both compounds, ZnPc-2 and ZnPc-3, present a Soret band absorption around at 358 and 359 nm, respectively. The Soret band was observed due to the transitions from the deeper π levels to the LUMO of the conjugated macrocycle. Both compounds, ZnPc-2 and ZnPc-3, present a Soret band absorption around at 358 and 359 nm.

Zero–zero excitation energy (E₀₀) was obtained from the intersection of absorption and emission spectra (λₘₐₓ):

\[
\frac{E₀₀}{\text{int}} = \frac{1240}{\text{μm}}
\]

The E₀₀ energies of ZnPc₆ were given in Table 1. The electrochemical behavior of the phthalocyanines was investigated using cyclic voltammetry (CV). The experiments were carried out in a typical three-electrode cell in which a glass sheet with deposited indium–tin–oxide (ITO) was used as the working electrode, a platinum wire was used as the counter electrode, an Ag/AgCl electrode was used as the reference electrode and THF containing 0.1 M tetraethylammonium hexafluorophosphate (TBAPF₆) was used as electrolyte. Fig. 4 shows the cyclic voltammograms of ZnPc-1 and ZnPc-2. The oxidation and reduction behaviors of metallophthalocyanine derivatives are due to the interaction between the phthalocyanine ring and the central metal [25]. The LUMO of phthalocyanines should have a higher energy than the conduction band edge of TiO₂ and the HOMO energy level of phthalocyanines should have a lower energy than the redox potential of the electrolyte for dye regeneration. The HOMO energy level can be calculated from the onset oxidation potential. The electrochemically HOMO energy levels of ZnPc-1 and ZnPc-2 were calculated as −4.81 and −4.61 eV, respectively. The lowest unoccupied molecular orbital (LUMO) levels were estimated from the differences between the HOMO energy levels and E₀₀ [26]. The LUMO levels of the phthalocyanines were estimated to be −3.01 and −2.87 eV, respectively. The LUMO levels are lower than the conduction band energy of TiO₂, suggesting that there should be enough thermodynamic driving force for electron injection from the excited state of the dyes into the conduction band of TiO₂. Furthermore, the HOMO energy levels of the dyes were also lower than the energy level of the redox couple I−/I₃− in the electrolyte indicating more efficient dye regeneration by electron transfer from I− [27]. The HOMO-LUMO gap decreased upon increasing the conjugation length [28]. Muto et al. reported the similar
observation for 2-thienyl and [2-2'-bithiophene]-5-yl substituted 1,4,8,11,15,18,22,25-octabutoxyphthalocyanines ([OBu]8Pcs) [17].

The results of CV experiments of ZnPc-1 and ZnPc-2 were summarized in Table 1. Both the 3-thienyl substituted ZnPc-1 and 5-hexyl-2,2'-bithiophene substituted ZnPc-2 showed reversible oxidation peaks at 0.61 and 0.43 V, respectively. In addition, both of phthalocyanines showed the second oxidation peak at 1.10 and 0.88 V, respectively.

The photovoltaic characterizations of solar cells based on the ZnPc-1 and ZnPc-2 sensitizers using TiO2 layers obtained with a sandwich cell using electrolyte of 0.6 M N-methyl-N-butyl-imidazolium iodide (BMII) + 0.1 M LiI + 0.05 M I2 + 0.5 M 4-tert-

Scheme 1. i) H2SO4, NaNO2, KI; ii) Pd(PPh3)4, Na2CO3, DME, 80 °C, reflux; iii) Zn(OAc)2, DBU, DMAE, 130 °C, reflux; iv) THF:MeOH (3:1), NaOH, 70 °C, reflux.
butylpyridine (TBP) in acetonitrile as redox electrolyte were presented in Fig. 5. And all photovoltaic data were summarized in Table 2. ZnPc-1 and ZnPc-2 sensitized DSSCs were fabricated using substrates with 7 μm of standard 20 nm particle titania paste, along with a 5 μm thick scattering layer. Under standard global AM 1.5 solar conditions, the ZnPc-2 sensitized cell devices gave a short-circuit photocurrent density (J_{sc}) of 3.81 mA/cm2, an open-circuit voltage (V_{oc}) of 500, and a fill factor (ff) of 0.59, corresponding to an overall conversion efficiency η, derived from the equation (η) $J_{sc}V_{oc}$ff/light intensity, of 1.12% (see Table 2).

ZnPc-2 was modified over ZnPc-1 with the thiophene bridged bulky alkyl chains. Introduction of soluble thiophene alkyl chain moieties to phthalocyanine allowed for an efficient sensitizer for dye sensitized solar cells. In dye sensitized solar cell devices, it was found that ZnPc-1 exhibited low photovoltaic performance that could be rationalized by lack of thiophene bridged alkyl chains that prevents back electron reactions as a spacer. The ZnPc-2 dye, however, exhibited high photocurrent and high photoresponse than ZnPc-1 for efficient dye sensitized solar cell. The introduction of thiophene bridged alkyl chain groups in ZnPc-2 dye reduced molecular aggregation as well as increased solubility. ZnPc-1 showed higher photocurrent than ZnPc-2 because of a little bit large amount of absorbed photons in absorption spectra.

The incident photon to current conversion efficiency (IPCE) of ZnPc-1 and ZnPc-2 was displayed in Fig. 6. The ZnPc-2 based DSSC device exhibited a broad IPCE between 550 and 800 nm, but was limited to low efficiency. The absorption of ZnPc-2 was red shifted compared to ZnPc-1 sensitizers while maintaining the energy

Table 1

<table>
<thead>
<tr>
<th></th>
<th>E_{on} (V)a</th>
<th>λ_{abs} (nm)b</th>
<th>E_{0-0} (eV)c</th>
<th>HOMO (eV)d</th>
<th>LUMO (eV)e</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnPc-1</td>
<td>0.61</td>
<td>1.10</td>
<td>687</td>
<td>1.80</td>
<td>-4.81</td>
</tr>
<tr>
<td>ZnPc-2</td>
<td>0.43</td>
<td>0.88</td>
<td>705</td>
<td>1.76</td>
<td>-4.63</td>
</tr>
</tbody>
</table>

a Oxidation onset potential vs. Ag/AgCl reference electrode.

b Measured from the intersection of the normalized absorption and emission spectra.

c Estimated from the λ_{max}.

d HOMO = -(+E_{on} - $E_{ferrocene}$) + 4.8 eV, where 0.6 V is the value for ferrocene vs. Ag/AgCl and 4.8 eV is the energy level of ferrocene below the vacuum.

e LUMO = HOMO + E_{0-0}.
levels necessary for efficient electron injection and hole regeneration in dye sensitized solar cells. In addition, the selection of thiophene bridged bulky alkyl chains supplied for additional functionality such as minimizing recombination, increasing solubility, and preventing dye aggregation. The molecular engineering approach demonstrated herein was an example of the possibility to prepare new types of phthalocyanines. Further structural optimization reducing the chances of aggregation and enhancing the directionality of charge redistribution in the excited state is very likely to yield more efficient sensitizers. Our work will continue in fine-tuning phthalocyanine sensitizer for more efficient dye for dye sensitized solar cells.

In line with these statements, we reported the efficiency under standard conditions obtained for ZnPc-2 sensitizer using 7 (transparent) + 5 (scattering) μm TiO2 layers that showed 500 mV open circuit voltage, 3.81 mA/cm² short-circuit current, 0.59 fill factor, and 1.12% overall conversion efficiency.

The new dyes including ZnPc-1 and ZnPc-2 show an extended π-conjugation system, which produces a redshift in the maximum absorption, in comparison with three tert-butyl groups substituted TT1 dye [29]. TT1 dye shows a Q-band absorption at 679 nm, whereas ZnPc-1 and ZnPc-2 dyes show a maximum absorption at 684 and 700 nm, respectively. The use of tert-butyl groups enhances the solubility, minimizes the aggregation, and tunes the LUMO level of the phthalocyanine [29,30]. In ZnPc-2 dye, three 5'-hexyl-2,2'-bithiophene groups decrease the aggregation and increase the conversion efficiency. However, this efficiency is generally lower those of TT1 and other tert-butyl substituted phthalocyanine dyes [29–31]. Similar results were reported by Ince et al. for ZnPc dye 2 with 5'-hexyl-2,2'-bithiophene groups [24]. It was indicated that the efficiency was increased to 2.70% by changing the electrolyte and by using coadsorbent chenodeoxycholic acid (CDCA). As a result, the aggregation phenomena play an important role on the overall efficiency and explain the low efficiency obtained by ZnPc-2 dye.

4. Conclusions

In conclusion, we have successfully synthesized two unsymmetrical phthalocyanine dyes containing 3-thienyl and 5'-hexyl-2,2'-bithiophene groups at peripheral position of the macrocycle. Photophysical properties (absorption, emission and electrochemical) of phthalocyanines were investigated. It was found that 5'-hexyl-2,2'-bithiophene substituent shifted the absorption maximum to red region and decreased the HOMO-LUMO gap upon increasing conjugation length. We have also demonstrated phthalocyanine sensitizers in the visible and near-IR region of the solar spectrum. We have successfully fabricated dye-sensitized solar cells using Zinc phthalocyanines. We reported the efficiency obtained with 7 (transparent) + 5 (scattering) μm TiO2 transparent layers under standard conditions for ZnPc-2 dye that achieved a short circuit current (Jsc) of 3.81 mA/cm², an open circuit voltage (Voc) of 500 mV, and a fill factor (FF) of 0.59 for a total efficiency of 1.12%.

Acknowledgments

This work was supported financially by the grant of Suleyman Demirel University, Scientific Research Projects (2950-D-11).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.dyepig.2014.09.018.

References

Table 2
Photovoltaic performance of TiO2 based dye sensitized solar cells.

<table>
<thead>
<tr>
<th></th>
<th>Jsc (mA cm⁻²)</th>
<th>Voc (mV)</th>
<th>FF</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnPc-1</td>
<td>1.08</td>
<td>500</td>
<td>0.47</td>
<td>0.25</td>
</tr>
<tr>
<td>ZnPc-2</td>
<td>3.81</td>
<td>500</td>
<td>0.59</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Fig. 6. Incident photon to charge carrier efficiency of dye sensitized solar cells.
[16] Zhang X, Mao L, Zhang D, Zhang L. Synthesis, characterization and elec-
trchemistry of novel unsymmetrical zinc phthalocyanines sensitizer with

[17] Muto T, Temma T, Kinura M, Hanabusu K, Shirai H. Elongation of the pi-
system of phthalocyanines by introduction of thieryl substituents at the pe-

[18] Zhang D, Zhang X-J, Zhang L, Mao L-J. A new unsymmetrical zinc phthalo-
cyanine as photosensitizers for dye-sensitized solar cells. Bull Korean Chem

Binuclear phthalocyanines covalently linked through two- and four-atom

the performance of dye-sensitized solar cells by co-grafting amphiphilic
sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. J Phys Chem B

ration and electrochemical and optical properties of unsymmetrically sub-
stituted phthalocyanines with one or two trithiole rings and related

[22] Leznoff CC, Svirskaya PI, Khoul B, Cerrey RL, Seymour P, Lever ABP. Syntheses
of monometalated and unsymmetrically substituted binuclear phtha-
locyanines and a pentanuclear phthalocyanine by solution and polymer support

[23] Westemeyer A, Kliesch H, Wohlrle D. Unsymmetrically substituted phtha-
lcyanine derivatives via a modified ring enlargement reaction of unsubstituted

[24] Ince M, Cardinali F, Yum J-H, Martínez-Diaz MV, Nazeeruddin MK, Grätzel M,
et al. Convergent synthesis of near-infrared absorbing, “push-pull”,
bisnaphtho-substituted, zinc(II) phthalocyanines and their application in

[25] Sakamoto K, Furuya N, Soga H, Yoshino S. Cyclic voltammetry of non-
peripheral thioaryl substituted phthalocyanines. Dye Pigment 2013;96(2):
430–4.

[26] Zhu L, Yang H Bin, Zhong C, Li CM. Rational design of triphenylamine dyes for
highly efficient p-type dye sensitized solar cells. Dye Pigment 2014;105:
97–104.

[27] Balanay MF, Kim DH. DFT/TD-DFT molecular design of porphyrin analogues
S121–7.

and electrochemical properties of homo- and heterodinuclear diethynylethene

et al. Molecular cosensitization for efficient panchromatic dye-sensitized solar

et al. Efficient sensitization of nanocrystalline TiO2 films by a near-IR-
absorbing unsymmetrical zinc phthalocyanine. Angew Chem Int Ed

et al. Structure-function relationships in unsymmetrical zinc phthalocyanines